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Abstract

A technique for investigation of classical fields is developed on the base of invariant Hamiltonian formalism.
Electromagnetic and scalar fields are considered as particular examples of using the general method. Poisson
brackets for these fields are calculated. The necessity of introduction of “non-physical” degrees of freedom for
electromagnetic field is explained.

1. Introductory remarks. This paper is the first in the set of six joined by the same title. References to these
papers will be given here in Roman numbers: [I], . . . , [VI].

One of the causes for this research was the attempt to answer the question: What is the structure of the space of
states of quantized electromagnetic field, considered from functional analysis?

1. When they describe Gupta-Bleuler quantization scheme modern textbooks silently imply that the question
about the topology of quantum space of states of quantized electromagnetic field is solved in full analogy
with scalar field. And electromagnetic field is quantized either in usual Hilbert space (such a construction is
not relativistic invariant, even in non-apparent way [VI]) or in “Hilbert space with indefinite metric” (in such
an approach the question about the topology has not been considered yet with all necessary mathematical
strictness; in fact, it turns out that the space of states has not been defined constructively at all).

Anyway, founded on different analogies, it is usually supposed that the space of states, from topological point
of view, must be a Hilbert space. From our research it will be clear, that this point of view is erroneous. And
this result is quite general: it forces us to make a new look at quantization of fields, even those fields that
were quantized quite well up to now (for example, the scalar field).

2. It will be shown that the root of the problem is not in functional analysis, but in algebra. The process of
quantization in Fock space was not satisfactorily described from algebraic point of view yet. This is because,
following Fock [1], for construction of quantized electromagnetic field people take as a starting object the
one-particle quantum space of states. But such an algebraic structure is too poor: there is no algebraic
process that allows to construct quantized field, based on this structure (Namely, using only structure of
one-particle state, it is impossible to introduce local field operators (see, for example, [3], chapter 5)).

It will be clear from this research that an adequate algebraic structure for construction of a quantized field
is a classical field, described with the use of the invariant Hamiltonian formalism.

3. After solving algebraic questions (i. e. formulating satisfactory quantization scheme) the solution of the
question about topology appears to be a quite “working” (non-fundamental) problem. It appears to be
important to realize that it is necessary for constructing the space of states of electromagnetic field to
abandon to use Hilbert space. In the paper [VI] for solving this problem we will introduce new types of
functional spaces.

4. There is no reason to discuss the question about relativistic invariance of the suggested construction of
quantized field. The suggested construction is not only invariant: the requirement of relativistic invariance
is the part of the construction.

If we use the quantization scheme, given here, for quantizing the harmonic oscillator, the requirement of
invariance with respect to some group substitutes (in some sense) the requirement of using Hilbert space as
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a space of states. And we get two quantizations: one in Hilbert space and one — in the space with indefinite
scalar product.

So, we do not even try to generalize Stone-von Neumann theorem for the case of relativistic fields: instead,
we suggest completely different conception of quantization, which works differently even in the case of the
harmonic oscillator.

5. So far as our approach to quantization is consistently oriented to explicit control of a symmetry (in the case
of relativistic fields — with respect to the Poincare group), it becomes possible to see, how the action of a
group of symmetry is transferred from classical space of states to quantum. It will not be an exaggeration to
say that these are our papers where it is for the first time explained (at the rigorous level) how a quantum
system gets integrals of motion of the same type that corresponding classical system has (and these integrals
are connected with the group of symmetry).

6. It is well known from the classical paper of Bohr and Rosenfeld [4] that some problems arise when we consider
field operators in a fixed point of space-time. In modern books pretending to mathematical strictness it is
said that we have in this case an “operator distribution”.

If we use the invariant Hamiltonian formalism as a base for construction of quantum fields, we can see that
this problem can be investigated even in the classical mechanics, and much more clearly.

From the formal point of view, it is possible to investigate this question even in this paper. Especially as
rigorous approach to calculation of Poisson brackets requires discussion of the topology of invariant phase
space. Nevertheless, I prefer to postpone this question to the last paper. This is because the choice of
topology for invariant phase space can be clearly and simply motivated only after consideration relativistic
fields from the point of view of group theory [IV] and discussion of quantization [VI].

7. It is known that it is possible to add some divergence to the Lagrangian of a field without changing the
equations of the motion. It is shown in the paper [II] that invariant Hamiltonian description of a field is not
changed in this case. So far as the suggested scheme of quantization is totally based on the structure of the
invariant Hamiltonian formalism, obtained quantization does not depend on this substitution of Lagrangian
also.

8. So far as for the base for construction of quantized fields we use classical field, not one-particle quantum space,
Wigner-Mackey theory (about unitary representations of the Poincare group) does not play a fundamental
role for us. The analogy of this theory is the theory of symplectic representations of Poincare group (in the
paper [IV] I tried to describe some foundations).

The theory of symplectic representations of Poincare group is similar to the theory of unitary representations.
But the example of electromagnetic field shows that there is not full analogy here.

9. In our account we will orientate ourself mainly to linear real Bose fields. The requirement of linearity here
is of principle: we cannot quantize non-linear fields. As to requirements of reality and being Bose-field,
these restriction are accepted here only to simplify notations and formulations. “Complexity” of a field just
means the existence of additional complex structure. As to Fermi fields, for their description we need to use
Grassmanian variables (see, for example, [6]). It is not important for our consideration, whether we use usual
or Grassmanian numbers.

In this paper we give classical description of electromagnetic field. The main goal is to give an account of well-
known facts in a new language. However this approach allows us to look at some questions completely differently:
for example, the question about energy of electrostatic field was treated incorrectly till now.

2. Notations. In tensor notations we will write vectors of Minkowski space as aµ , bν etc. And we will use
only contravariant components of tensors; indexes numbering components will be written always down. The frame
of reference will be always supposed to be orthonormal with respect to the scalar product g( · , · ) , so that metric
tensor has standard appearance: gµν = diag (+1,−1,−1,−1)µν . Repeating indexes always imply summation with
due regard for signs. For example, the scalar product will be written as

a b = aµ bµ = gµν aµ bν = a0 b0 − a1 b1 − a2 b2 − a3 b3 .

The derivatives with respect to space-time coordinates will be marked by the symbol ∂µ :

∂µ =
(

∂
∂x0

− ∂
∂x1

− ∂
∂x2

− ∂
∂x3

)
µ
,
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so, the index of a derivative, like all indexes, is contravariant.

For reducing of notations the symbol of antisymmetrization is introduced: [µν] . This symbol means that we make
antisymmetrization with respect to the nearest indexes µ and ν following after it. For example, the tensor of
electromagnetic field is written as Fµν = ∂µAν − ∂νAµ = [µν] 2 ∂µAν .

D’Alembert operator is given by formula: ∂2 = ∂µ∂µ .

The Fourier transformation everywhere looks like:

ϕ̃(k) =
∫
d4x e+ikx ϕ(x) , ϕ(x) =

∫
d4k

(2π)4
e−ikx ϕ̃(k) . (1)

The system of units is so that ~ = c = 1 .

3. Invariant Hamiltonian formalism. It was shown in papers [7, 8, 9] that basic notions of the Hamiltonian
formalism (namely, phase space and symplectic structure on it) can be treated in a relativistic invariant sense.
In those papers formulas for symplectic structure of the most important systems were obtained (in coordinate
representation). So, there was given a base of a scheme that can be called an invariant Hamiltonian formalism.
A detailed account of this formalism see in original reviews [10, 11]. The question of equivalence of this approach
and usual Hamiltonian mechanics for the case of systems with constraints was discussed also in [12].

Nevertheless I will remind here some basic notions. This is necessary in order to introduce our own notations.

Let field ϕi(x) is described by the Lagrangian L(ϕi, ∂µϕi) . Here we will suppose that Lagrangian depends only
on field values ϕi and their derivatives1 and does not depend on the point x . Furthermore, we will consider only
linear fields and Lagrangian will be supposed to be a quadratic function.

The least-action principle leads us to Euler-Lagrange equations:

∂L

∂ ϕi
− ∂µ

∂L

∂ (∂µϕi)
= 0 . (2)

Invariant phase space Z is defined as the set of all functions2 ϕi that satisfy equations (2). So long as we suppose
the equation (2) to be linear, the space Z has natural linear structure.

The elements of the space Z we will denote by underlined sets of symbols; for example, c ∈ Z . Functions on
this space we will write as f c . For example, the value of the function ϕ corresponding to an element c in point
x is written as ϕ(x) c .

We will usually identify elements of tangent bundle TZ with elements of the space Z . If it is necessary to point
out that tangent vector c comes from a point b ∈ Z , we can write it as c [b] . Elements of cotangent bundle T ∗Z
will be similarly identified with the elements of adjoint space Z∗ . At the same time, differentials of linear functions
will be identified with functions, i. e. instead of writing df we write simply: f .

On the invariant phase space Z , like on usual phase space, there is a symplectic structure ω :

ω =
∫
Σ

dσµ δjµ(x) , here δjµ(x) =
∂L

∂ (∂µϕi)
∧ ϕi . (3)

The integration is assumed over any space-like hyper-surface Σ , which behaves well enough in infinity. 2-form δjµ
is called a symplectic current. So long as the symplectic current is conserved, the result does not depend on the
choice of the surface Σ .

The freedom in the choice of Lagrangian and non-uniqueness of the symplectic structure will be considered in the
paper [II]. In reasonable sense we can say that non-uniqueness in the choice of Lagrangian does not influence the
symplectic structure.

The symplectic structure ω , as usually [13], defines an isomorphism I : T ∗Z → TZ of cotangent T ∗Z and

1It will be sufficient here to restrict ourself with Lagrangians depending only on derivatives of the first order. In general case we
can consider also Lagrangians with higher derivatives [12].

2More precisely, we will suppose for the present that we consider only smooth functions. We will also suppose that these functions
differ from zero only on such a set, that intersection of this set with any space-like plane is finite. In paper [VI] we will discuss the
question about natural topology of the space Z .
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tangent TZ bundles3. It transfers any 1-form l · ∈ T ∗Z to tangent vector Il ∈ TZ , so that for any tangent
vector c ∈ TZ we have the equality:

ω c ; Il = l c . (4)

If a form l · is a differential of some function g · , i. e. l · = dg · , we say that g · is a generator of the vector field
Il = I dg .

The Poisson bracket of two functions f · and g · is defined by equality:

{ f , g } = df I dg . (5)

If functions f · and g · are linear this definition can be written just as:

{ f , g } = f Ig . (6)

It will be enough here to restrict ourself with real fields, so the space Z will be a real linear space. Nevertheless,
it is useful to consider complex functions on the phase space. Their differentials belong to complexified adjoint
space. This is why instead of using the space Z∗ we will always use its complexification Z∗C . Furthermore, when
we define the Poisson bracket by formula (5), it is necessary to consider complex vectors I dg . It could be avoided
if we define the Poisson bracket in a more abstract way4.

4. Scalar field. Consider the scalar field. Its Lagrangian is:

L = 1
2 ∂νϕ∂νϕ−

m2

2 ϕ2 .

The equation of the motion (2) takes form (Klein-Fock-Gordon equation):(
∂2+m2

)
ϕ = 0 . (7)

The symplectic structure (3) on the invariant phase space Zscal in coordinate representation takes the form (given
in [7]):

ω =
∫
Σ

dσν ∂νϕ ∧ ϕ . (8)

Let us make a Fourier transformation of the function ϕ(x) by the formulas (1). So far as the function ϕ(x)
satisfies the equation (7), its Fourier-transform ϕ̃(k) can be represented as:

ϕ̃(k) = 2π δ(k2 −m2) · a(k) , (9)

where a(k) is a usual function defined on the mass surface k2 = m2 .

Performing Fourier transformation of the symplectic structure (8) we have:

ω · ; · =
∫
dµm · i ε(k) · a(−k) · a(k) · , here dµm =

d4k

(2π)4
· 2π δ(k2 −m2) . (10)

Here integrated function is a usual product of numbers5. It is implied that arguments in the right part follow in
the same order as in the left.

Now in order to calculate the Poisson bracket of two field values { ϕ̃(k) , ϕ̃(k′) } , according to the formula (6), let
us consider the vector Iϕ̃(k′) . From the formulas (4) and (10) we have that for any vector c :∫

dµm · i ε(k) · a(−k) c a(k) Iϕ̃(k′) = ϕ̃(k′) c .

3Rigorously speaking, we can talk about such an isomorphism only after discussing the topology of the invariant phase space.
Without such a discussion even the notion of cotangent bundle does not have a clear sense. For the reasons explained in “Introductory
remarks” discussion of this question for the case of relativistic fields we postpone to paper [VI].

It should be also kept in mind that values like ϕ(x) that we use here appear to be not belonging to cotangent bundle after we
introduce the proper topology. This shortcoming can be easily eliminated, but prefer just to ignore it till discussion of the topology.

4We prefer to avoid complexification of Z , because this space can be considered as the set of physical states existing in nature.
The space Z∗

C can be considered as the set of mathematical values that we use to describe physical states.
5If we denote dµ+

m = dµm · θ(k) , the formula (10) can be written with external product of forms:

ω =

∫
dµ+
m · i a∗(k) ∧ a(k) .
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Using linear independence of the form a(k) · with different values of k , k2 = m2 , and the definition of this
form (9), we get that the vector Iϕ̃(k′) satisfies the following equation:

a(k) Iϕ̃(k′) = − i ε(k) · (2π)4δ(k + k′) .

Therefore, using the formula (6), for the Poisson bracket we have:

{ ϕ̃(k) , ϕ̃(k′) } = −
[
i ε(k) · 2π δ(k2 −m2)

]
· (2π)4δ(k + k′) . (11)

Sometimes it is useful to have an analogous relation in coordinate representation. In order to get it we make the
Fourier transformation of the formula (11) with respect to the arguments k and k′ :

{ϕ(x) , ϕ(x′) } = −Dm(x− x′) .

Here function Dm(y) is:

Dm(y) =
∫

d4k

(2π)4
e−iky ·

[
i ε(k) · 2π δ(k2 −m2)

]
. (12)

5. “Physical” electromagnetic field. Let us choose the Lagrangian of electromagnetic field gauge-invariant:

L = − 1
4 Fµν Fµν = − [µν] ∂µAν ∂µAν , here Fµν = [µν] 2 ∂µAν . (13)

The equations of the motion (2) take the form (the second Maxwell equation):

∂µFµν = 0 . (14)

In this case it is convenient to define the invariant phase space Zphys as the set of functions Fµν(x) that satisfy
the equation (14). The value of vector potential Aµ in a fixed point x is not a well-defined function on Zphys :
an expression like Aµ(x) · has no sense if we do not say which gauge we use. For this reason, it is impossible to
give any one-valued formula for the Poisson bracket of vector potential.

The symplectic structure (3) in this case takes the form (shown in [8, 10]):

ω = −
∫
Σ

dσµ Fµν ∧Aν . (15)

It is appropriate to mention that, though the form ω is written with using gauge-dependent value Aν , it is still
gauge-independent, of course.

Let us now choose the vector potential Aµ so that it satisfies the Lorentz condition ∂νAν = 0 . According to the
equation (14), it will also satisfy the D’Alembert equation: ∂2Aµ = 0 . Let us split the expression (15) into two
terms:

ω = −
∫
Σ

dσµ ∂µAν ∧Aν +
∫
Σ

dσµ ∂νAµ ∧Aν .

The second integral is equal to zero. We can check it in the following way. First, from the Lorentz condition and
antisymmetry of external product we have that the integrated function is a conserved current: ∂µ(∂νAµ∧Aν) = 0 .
Therefore in the second integral, independently from the first, we can integrate on the surface t = 0 instead of
integration on Σ . So, we get the integral: ∫

d3x ∂νA0 ∧Aν .

Using the Lorentz condition we can write it as:∫
d3x ∂ν(A0 ∧Aν) .

But A0 ∧A0 = 0 . Therefore the summation by index ν can be performed just from 1 to 3 . We get:∫
d3x ∂n(A0 ∧An) .
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This integral is an integral of the three-dimensional vector A0 ∧An . By Ostrogradsky-Gauss divergence theorem,
it is equal to the flux of this vector through a far two-dimensional closed surface. This flux is equal to zero because
the vector potential is implied to be chosen so that it is equal to zero there.

So, under the Lorentz condition ∂νAν = 0 , the symplectic structure (15) can be written in the following way:

ω = −
∫
Σ

dσµ ∂µAν ∧Aν . (16)

Let us make the Fourier transformation (1) of functions Aµ(x) and Fµν(x) . Similarly to the case of the scalar
field we can write these Fourier transforms as:

Ãµ(k) = 2π δ(k2) · aµ(k) , F̃µν(k) = 2π δ(k2) · fµν(k) .

Here aµ(k) and fµν(k) are usual functions defined on the light cone k2 = 0 .

The symplectic structure (16) in the Fourier representation takes the form6:

ω · ; · = −
∫
dµm · i ε(k) · aν(−k) · aν(k) · . (17)

The formulas (16) and (17) look very similar to the corresponding formulas (8) and (10) for the scalar field.
More rigorously, they look like formulas for the symplectic structure of four scalar fields. But it is important to
understand that the invariant phase space Zphys introduced in this section is not a direct sum of phase spaces
of four scalar fields. For this reason, as we mentioned above, it is impossible to calculate the Poisson bracket for
vector potential.

Consider now the structure of the space Zphys in Fourier representation. This space can be considered as the set
of functions aµ(k) on the light cone k2 = 0 satisfying the Lorentz condition − i kµ aµ(k) = 0 and considered
accurate up to the gauge transformation:

aµ(k) ∼ aµ(k)− i kµ λ(k) .

From here and from the formula (17) we see that the symplectic structure on the space Zphys is not degenerate.

Now it is clear that, though it is impossible to calculate the Poisson brackets for components of vector potential, it
is possible to calculate the brackets { F̃µρ(k) , F̃νσ(k′) } and {Fµρ(x) , Fνσ(x′) } . Nevertheless, we postpone this
problem till the section 11.

6. Heisenberg-Pauli term. After the paper of Heisenberg and Pauli [14] when quantum theory of electromag-
netic field is discussed it is customary to change the Lagrangian adding to it an additional term ε

2 (∂µAµ)2 . For
such a step in modern textbooks there are many different “explanations”. Generally they can be divided into two
types.

The first type are “explanations” appealing to formal difficulties of using the Hamiltonian formalism and watching
relativistic invariance. As we have shown in the section 5, even if there were any difficulties, they disappear, if we
use the invariant Hamiltonian formalism.

The second type are “explanations” appealing to quantum theory in some way. Now our first goal is to explain
that the reasons for changing the Lagrangian exist even in the classical theory.

At first sight, the term ε
2 (∂µAµ)2 only fixes the gauge: if the Lorentz condition was satisfied in the past, it will

be satisfied in the future. But actually there is a more deep consequence: when we develop scattering theory and
perturbation theory we get the opportunity to get rid of such a fiction as separation of field to “own” field of
particles and “radiation”.

Indeed, it is impossible in practice to solve a dynamic problem exactly. So, we calculate first some first approxi-
mation and then we calculate radiative corrections. In order to take into account radiative recoil we have to divide
field into “own” and “radiative” in some way. But it is impossible to do it rigorously even in simplest situations.
It is not surprising, because in the Lagrangian formalism there is no hint of such a separation.

6Using an external product we can write it as:

ω = −
∫
dµ+
m i a∗ν(k) ∧ aν(k) .
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But we can approach problems of scattering differently. Consider, for example, scattering of two particles interacting
with each other by electromagnetic field. Let us use some naive mechanical analogy: for example, two heavy balls
sliding on a smooth elastic membrane. Membrane corresponds to electromagnetic field.

If we do not divide the field into own and radiation we have to accept that all field is “created” by particles. In
order to formalize such an approach we have to introduce turning interaction on and off.

The process of scattering of particles and of electromagnetic field then can be described in the following way:

1. In the far past the particles are free and they do not interact with the field. There exists also the field and
it is far from the particles.

2. Then, while particles are far from each other, we turn on interaction adiabatically. The particles put on their
field at this stage.

3. After interaction is fully turned on particles (and field) run to each other near, interact and then run away
from each other.

4. When they are far enough we turn interaction off adiabatically.

5. Then there remain only bare particles, and there is no field near them, and free field which is not connected
with the particles.

It is obvious for balls sliding on an elastic membrane how to turn on and off interaction: it is necessary to turn
on and off the gravitation. But in the case of electromagnetic field we can not do anything so simple. Consider,
for example, interaction of electromagnetic field Aµ(x) with a given current Jµ(x) . The Lagrangian in this case
takes the form:

L = − 1
4 Fµν Fµν − αJµAµ . (18)

Here α(x) is a function that turns on and off interaction. In order to write formulas shorter we will use a notation:

Jαµ (x) = α(x) Jµ(x) .

From the Lagrangian (18) we get the equation of the motion:

∂µFµν = Jαν . (19)

Applying to both sides the operation ∂ν we see that, if ∂νJ
α
ν 6= 0 , the equation (19) does not have any solutions.

So, the interaction can not be turned on and off.

But if we add to the Lagrangian the term ε
2 (∂µAµ)2 , i. e. use the Lagrangian

L = − 1
4 Fµν Fµν + ε

2 (∂µAµ)2 − Jαµ Aµ ,

then the equation of the motion takes the form:

∂µFµν − ε ∂ν∂µAµ = Jαν , (20)

and solution Aµ(x) can be easily found for any function α(x) .

Later we will always imply that ε = −1 . In such a case the equation (20) takes especially simple form:

∂2Aν = Jαν . (21)

Its solution is the Liénard-Wiechert potential. For this reason this “gauge” should be called the Liénard-Wiechert
gauge. Nevertheless, in quantum electrodynamics it is called the Feynman gauge.

If we calculate a four-dimensional divergence of both parts of equation (21), we get:

∂2(∂νAν) = ∂νJ
α
ν .

It can be shown from here that, if interaction is turned on and off adiabatically and the Lorentz condition ∂νAν = 0
took place in the far past, then it will take place everywhere.

From this we also see that the additional term 1
2 (∂µAµ)2 in the Lagrangian will make a zero contribution in the

variation of action. Therefore in the region, where interaction is completely turned on, the system of particles and
fields will satisfy the same equations of motion as the system with no additional term in the Lagrangian.

So, introduction of the additional term in the Lagrangian does not substantially change the scattering. But it
allows to avoid separation of “own” field of particles and allows to construct a local perturbation theory.

It is difficult to say now, how far we can go in constructing of perturbation theory for classical electrodynamics.
But it is apparent that without introduction of the additional term in Lagrangian situation would be completely
hopeless.
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7. “Non-physical” electromagnetic field. Now consider again the free electromagnetic field, but include
already in Lagrangian the term − 1

2 (∂µAµ)2 . Then the Lagrangian can be written in the following way:

L = − 1
4 Fµν Fµν −

1
2 (∂µAµ)2 = − 1

2 ∂µAν ∂µAν + 1
2 ∂µ(Aν ∂νAµ −Aµ ∂νAν) .

As we will show in the paper [II] the term that is a full divergence can be thrown off. After that the Lagrangian
takes especially simple form:

L = − 1
2 ∂µAν ∂µAν ,

i. e. it is in fact the Lagrangian of four scalar fields7 with m = 0 considered in the section 4. The equation of the
motion has the form:

∂2Aµ = 0 .

Now the invariant phase space is a direct sum of four phase spaces of scalar fields. Let us denote it as Z4 . The
symplectic structure in coordinate and Fourier representations is given by formulas:

ω = −
∫
Σ

dσµ ∂µAν ∧Aν . (22)

ω · ; · = −
∫
dµm · i ε(k) · aν(−k) · aν(k) · . (23)

The formulas (22) and (23) look the same as corresponding formulas from the section 5. But the difference in their
meaning is important: now we can calculate the Poisson bracket for the vector potential. In Fourier representation
it has the form:

{ Ãµ(k) , Ãν(k′) } = gµν ·
[
i ε(k) · 2π δ(k2)

]
· (2π)4δ(k + k′) . (24)

In coordinate representation:
{Aµ(x) , Aν(x′) } = gµν D0(x− x′) . (25)

Here D0(y) is the function (12) with m = 0 . In this case it can be written just as:

D0(y) =
1

2π
ε(y) δ(y2) .

Let us apply to both sides of the formula (24) symbol [ρµ] 2 (− i kρ) [σν] 2 (− i k′σ) . We get the formula for the
Poisson bracket of the tensor of electromagnetic field in the Fourier representation:

{ F̃µρ(k) , F̃νσ(k′) } = [µρ] [νσ] 4 gµν kρ kσ ·
[
i ε(k) · 2π δ(k2)

]
· (2π)4δ(k + k′) . (26)

In the coordinate representation this relation can be written in the following way:

{Fµρ(x) , Fνσ(x′) } = − [µρ] [νσ] 4 gµν ∂ρ ∂σD0(x− x′) . (27)

Here both derivatives are taken with respect to the argument without dash.

It should be mentioned already that formulas (26) and (27) are the same as formulas for the Poisson brackets of
the “physical” electromagnetic field described in the section 5. It will be proven in the section 11.

8. Energy of electrostatic field. In the paper [III] we will get a formula that can be used in the invariant
Hamiltonian formalism for obtaining generators of the Poincare group. With its help we easily get the formula for
the momentum of the “non-physical” electromagnetic field:

Pν = −
∫
dµ+

m · kν a∗ρ(k) aρ(k) . (28)

From this formula we see that the energy of the “non-physical” field is not positive-definite. And what is more, it
follows from this formula that the energy stored in electrostatic field created by a system of fixed charges is always
negative.

7The term corresponding to the field with index ν = 0 is included with negative sign.
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Here we will discuss this paradox with some details. This is necessary because it was usually incorrectly treated in
the frame of quantum theory (see, for example, [16, 17, 18, 19]).

The problem of negativity of energy of “time” photons in quantum electrodynamics was noted a long time ago. It
was supposed that quantization in the space with indefinite scalar product allows change the sign of this energy.
And it was considered as an argument for introduction of indefinite scalar product. It seemed so because, if we
use indefinite scalar product in quantum case, it is not quite clear what we should call the energy of a state: the
average value of the Hamiltonian or its eigenvalue. This vagueness, of course, appeared because, first, there was
no clear conception of quantization, and second, classical theory was not formulated in the appropriate way.

But from our consideration it is clear that the discussed energy must be negative: only such value looks natural
from the point of view of relativistic theory. And indefiniteness of metric in quantum case has no relation to this
question.

It should be also noted here that the notion of vacuum of a field we do not connect in any way with minimum of
energy. The vacuum of a classical field is just the zero vector of the space Z . A notion of vacuum of a quantum
field we will introduce in description of quantization in the paper [VI].

But what can we say now about the positiveness of electrostatic energy which is well-known in the usual electro-
statics? The fact is that this notion implies usually a different meaning: it usually implies the work that the system
can make, if charges will be split in infinite small parts and they will be carried far away from each other. But the
formula (28) gives the energy that remains in the field, if its interaction with the charges is instantly turned off.

We will not discuss this question in more details here. But let us notice the following. In electrostatics there is the
formula for energy:

E full = 1
2

∫
ϕdQ .

The multiplier 1
2 is usually explained so that, if we use the formula for the energy in external field, we count the

mutual energy of two charges two times.

But in the frame of the theory that we discuss here the field is always considered as external. Therefore, we can
say that the energy of charges is always given by the formula:

E charges =
∫
ϕdQ .

We have to add to it the energy of the field:

E field = − 1
2

∫
ϕdQ .

The sum of E charges and E field is exactly E full .

9. Scattered states of “non-physical” field. Consider now scattering of the “non-physical” field on a given
current. As it was explained in the section 6, we will suppose that the interaction with electromagnetic field is
turned on and off adiabatically and the particles constituting the current are accelerated only in the region of
space-time where the interaction is fully turned on, i. e. α(y) = 1 .

In an arbitrary point of space-time the field will consist of two components: the field that existed in the far past
and the field created by the particles. This additional field can be calculated with the Liénard-Wiechert formula:

Aret
µ (x) =

∫
d4x′Dc

0(x− x′) Jαµ (x′) , here Dc
0(y) = θ(y)D0(y) . (29)

In the invariant Hamiltonian formalism a state of a field implies a solution of the corresponding homogeneous
equation. In our case this is the equation ∂2Aµ = 0 . Therefore when we talk about a state of the field in the far
past or in the far future it is natural to continue the function Aµ(x) by the homogeneous equation to the whole
space. So, we come to the definition of the in- and out- fields: Aµ(x) in and Aµ(x) out . Here in and out are
vectors of the invariant phase space Z4 . It is natural to call these vectors in- and out- states. The difference of
these two vectors corresponds to the radiated field:

out− in = rad .

In order to find the field Aµ(x) rad we have just to make a minor correction in the Liénard-Wiechert formula (29):

Aµ(x) rad =
∫
d4x′D0(x− x′) Jαµ (x′) .
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In the Fourier-representation this formula can be written in an especially simple way:

Ãµ(k) rad = i ε(k) · 2π δ(k2) · J̃αµ (k) ,

or, with using non-singular function aµ(k) on the light cone, even shorter:

aµ(k) rad = i ε(k) J̃αµ (k) . (30)

We see that in the given formulas we can approach to the adiabatic limit. The set of all possible vectors rad
forms a linear subspace of the invariant phase space Z4 . Let us denote this space Z⊥ . As it was explained in
the section 6, if the interaction is turned on and off adiabatically, the Lorentz condition is not broken. Therefore
the space Z⊥ does not coincide with the whole Z4 . On the other hand, it follows from the formula (30) that
there is no other condition that restricts the space Z⊥ . So, Z⊥ is the subspace of the space Z4 defined by the
Lorentz condition:

rad ∈ Z⊥ ⇐⇒ − i kµ aµ(k) rad = 0 . (31)

This explains the notation Z⊥ .

It is natural to believe that all possible in-states were created from the vacuum by interaction with currents. Then
vectors of in- and out- fields also lie in the subspace Z⊥ . So far as all possible radiation fields fill the whole Z⊥ ,
all possible in- and out- fields also fill the whole Z⊥ .

Using the condition (31) and the formula (28) for the energy-momentum vector we see that the states from the
space Z⊥ have non-negative energy.

10. Remainders of gauge invariance. Consider now such a vector gauge ∈ Z that the function aµ(k) gauge

can be written as:
aµ(k) gauge = − i kµ λ(k) ,

where λ(k) is some function on the light cone. The set of all vectors of this type form a linear subspace in Z4 .
Let us denote this space Z‖ . It is obvious that Z‖ lies in Z⊥ .

Consider again the scattering of particles and field when the motion of particles is not given and there is, generally,
non-zero in-field. This scattering is described by the Lagrangian:

L = Lparticles − 1
2 ∂µAν ∂µAν − αJµAµ .

Let us suppose that the corresponding equations of motion are solvable and trajectories of particles and field Aµ(x)
that make action stationary are found. Let us also suppose that adiabatic turning on (off) of interaction is made
in so far past (future) that all particles are far from each other and the field Aµ(k) in ( Aµ(k) out ) is far from all
particles and the field Aµ(k) gauge is also far from all particles.

Let us add to the field Aµ(x) the field Aµ(x) gauge . Or, in other words, let us make the gauge transformation:

Aµ(x)→ Aµ(x) + ∂µΛ(x) , (32)

where Λ(x) is a function whose Fourier transform is connected with λ(k) by relation:

Λ̃(k) = 2π δ(k2) · λ(k) .

In the region where interaction is turned on and off this addition can not influence the stationarity of action.
Indeed, so far as the particles are outside of the region where this addition is present, variations of terms Lparticles

and −αJµAµ can not change. Furthermore, the term − 1
2 ∂µAν ∂µAν differs from the gauge-invariant by the

full divergence, which can not change the variation, and by the term − 1
2 (∂µAµ)2 , which has a zero variation,

because ∂µAµ = 0 .

Consider now the region, where interaction is fully turned on. The transformation (32) can not change the
variations of the terms Lparticles and − 1

2 ∂µAν ∂µAν for the same reasons that in the case of the regions where
the interaction is turned on and off. There remains the term − JµAµ . Under the gauge transformation (32) it
becomes − JµAµ− Jµ ∂µΛ(x) . Therefore, in the variation of the action we get the additional term − δJµ ∂µΛ(x) .
Integrating it by parts and using conservation of the current we get that it does not add anything to the variation.

So, under the transformation (32) motions that satisfy the condition of stationarity of action are transformed to the
motions that also satisfy this condition. It is possible to say that the space Z‖ does not participate in scattering
at all.
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It is natural to suppose that the scattered states of electromagnetic field are observed only by their influence on
charged particles. Then any two vectors from Z⊥ that differ by vector from Z‖ are physically indistinguishable.
Therefore, instead of using the space Z⊥ , we can use the factor-space Z⊥/‖ = Z⊥/Z‖ .

Notice now that in the Fourier representation the space Z⊥/‖ can be considered as the set of functions aµ(k) on
the light cone k2 = 0 satisfying the Lorentz condition − i kµ aµ(k) = 0 and considered accurate up to the gauge
transformation:

aµ(k) ∼ aµ(k)− i kµ λ(k) .

Therefore, we can establish the natural one-to-one correspondence between elements of the spaces Z⊥/‖ and
Zphys .

And what is more, the space Z⊥/‖ naturally inherits from the full space Z4 the symplectic structure (23), and
this structure obviously is the same as the symplectic structure of the space Zphys given by the formula (17). So,
Z⊥/‖ and Zphys are also naturally identified as symplectic spaces.

11. About the Poisson bracket on Z⊥/‖ . Consider now on the space Z4 a linear function F̃µρ(k) · (or
Fµρ(x) · ). And let us suppose k (or, correspondingly, x ) to be fixed. As we have said in the section 3, this
function is a generator of a vector field on Z4 .

Notice, first, that so far as the function under consideration is linear on Z4 , its differential does not depend on
the point of the space Z4 (and is identical with the function). Therefore the obtained vector field is constant on
the whole space Z4 .

Second, differential of the function under consideration, like the function, is zero on Z‖ . Therefore, as it is seen
from the formula for symplectic structure (23), the vector of the obtained constant vector field belongs to the
subspace Z⊥ .

From these two statements we get that the obtained field can be naturally restricted to the factor-space Z⊥/‖ .

On the other hand, the space Z⊥/‖ has its own symplectic structure. If we restrict the function F̃µρ(k) · (or
Fµρ(x) · ) to this factor-space, the obtained function will be a generator of some vector field in Z⊥/‖ .

But, so far as the symplectic structure in Z⊥/‖ is inherited from Z4 we can see that both vector fields in Z⊥/‖

are identical.

From here we also get that the formulas (26) and (27) obtained in the section 7 for the “non-physical” field work
for the “physical” field also.
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