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Symmetries of highly excited atomic hydrogen: Quadratic Zeeman splitting distorted
by fine-structure effects

D. A. Arbatsky* and P. A. Braun†

Department of Theoretical Physics, Institute of Physics, St. Petersburg State University, St. Petersburg 198904, Russia
~Received 20 January 1998!

Using the classical mechanical perturbation approach and semiclassical quantization rules we explain the
spectrum of atomic hydrogen in a weak magnetic field in which fine structure of levels cannot be neglected.
The general pattern of the spectrum turns out to be very different from the nonrelativistic scheme. In particular,
we point out the presence of another type of ‘‘exponentially narrow’’ doublet.@S1050-2947~98!07609-4#

PACS number~s!: 31.15.Gy, 31.15.Md, 31.30.Jv, 32.60.1i
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INTRODUCTION

The presence of discrete symmetry in a quantum sys
often leads to the appearance of extremely narrow multip
in the energy spectrum. The usual example is two symme
communicating wells when the lower part of the spectr
consists of ‘‘exponentially narrow’’ doublets. In the sem
classical approach it can be attributed to the presence of
symmetric phase trajectories of the corresponding class
system.

A more interesting case is the highly excited hydrog
atom in a magnetic field of suitable strength. The spec
properties of this problem have been discovered in exp
ments on hydrogenlike spectra of alkali-metal atoms@1,2#
and on hydrogen proper@3,4#, and in numerical calculation
@5–7#. A semiclassical theory underlying the observed
fects is described in@8–13#; for details and complete bibli
ography, see the reviews@14–18#. The phase space of thi
system possesses symmetry that also leads to exponen
narrow doublets in the so-called ‘‘vibrational part’’ of th
spectrum.

In this paper we consider the same system. But the m
netic field is assumed to be weaker so that the diamagn
splitting is comparable with the fine structure of the unp
turbed atom. Relativistic effects conserve the abo
mentioned symmetry and it seems unlikely that they w
lead to essentially new effects.

Nevertheless, we will show that the hydrogen atom
magnetic field possesses yet another symmetry. The l
does not lead to any interesting phenomena in the nonr
tivistic situation. However, when the relativistic effects a
present it gives birth to another type of doublet. Here
analyze the dynamical symmetry origin of these doublets
other peculiar relativistic distortions of the quadratic Zeem
spectra in the atomic hydrogen. We give a physical expla
tion of the earlier results of@19# where the discrete Wentze
Kramers-Brillouin-Jeffreys~WKBJ! method was used to
solve the quantum perturbation theory equations of the p
lem.
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I. BASIC ASSUMPTIONS

The Hamiltonian of the system can be written as

H5H ~0!1
g

2
~Lz1sz!1Vdia1Vrel . ~1!

HereVdia5(g2/8)(x21y2) is the diamagnetic interaction,g
is the magnetic field in atomic units (g51 corresponds to
B52.353105 T), sz is thez component of the doubled spi
operators, andVrel is the Pauli operator of the relativisti
corrections comprising ‘‘the mass on velocity dependenc
the spin-orbit interaction, and the Darwin contact interactio

Vrel5Vmass1Vso1VDarw,

Vmass52
~E2U !2

2c2
52

~E11/r !2

2c2
,

Vso5
1

4c2r

]U

]r
~s•L !52

1

4c2r 3
~s•L !,

VDarw5
1

8c2
¹2U5

p

2c2
d~r !.

There are three perturbations present in Eq.~1!; their rela-
tive impact depends on the field strength and the exten
the atomic excitation. We will make the following assum
tions.

~i! The spin and the orbital movements are uncoupl
This means that the first-order Zeeman splitting induced
the operatorH (1)[(g/2)(Lz1sz) is much larger than the
fine structure, or

g

2
@

a2

n3
,

where a is the fine-structure constant;n is the principal
quantum number of the atomic state under considerationn
@1).

~ii ! The first-order ~paramagnetic! Zeeman splitting is
large compared with the second order~diamagnetic! one, or
1898 © 1998 The American Physical Society
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FIG. 1. Spectrum of the Hamiltonian as
function of parameterj[32E4/c2vL

2 for n525,
m55, sz51. Left-hand side corresponds toj
50, right-hand side corresponds toj51`. The
casej51` is, of course, unattainable in realit
~see Sec. I!. Solid and dashed thick lines corre
spond to even and odd levels. Thin lines bord
regions with different symmetry and topology o
level surfaces of a classical Hamiltonian.
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~iii ! The diamagnetic splitting is much smaller than t
energy interval between adjacent shells in the unpertur
atom, or

ug!
1

n3
.

~iv! The diamagnetic splitting is comparable with the fi
structure, or

ug;
a2

n3
. ~2!

The first and the second of these assumptions guara
that the orbital angular momentum componentLz is con-
served. The third assumption means that mixing between
ferent shells of the atom can be neglected andn is a good
quantum number. Finally, Eq.~2! means that the magneti
field is weaker than that usually considered in the theory
the second-order Zeeman effect; in such fields the relativ
effects compete with the field-induced splitting complete
modifying it in some cases~see below!.

II. QUANTUM PERTURBATION THEORY

The paramagnetic operator splits the levelEn
(0)521/2n2

of the nonrelativistic unperturbed atom into a set of equid
tant levels with the spacingg/2:

Emsz

~1! 5
g

2
~m1sz!, ~3!

wheresz561 is the spin quantum number. These levels
still degenerate.

On the second stage we consider the splitting of this
sidual degeneracy. This can be done by diagonalizing
sum of the operators of the relativistic corrections and
diamagnetic interaction in the basis set of the spin-orbi
belonging to the level~3!. The respective basis set is forme
by the functions

unlmsz&5Rnl~r !Ylm~u,f!u~sz!
ed

tee

if-

f
ic

-

e

-
e
e
ls

with fixed n, m, sz , and all possiblel . HereRnl stands for
the nonrelativistic radial wave function of the atomic hydr
gen andu(sz) is the spin function.

It may be argued that, since there is degeneracy of
level ~3! with respect to the spin projection

Emsz

~1! 5Em12sz ,2sz

~1! ,

mixing of states withsz51 andsz521 must be taken into
account. However, the relativistic correction operator c
change the orbital angular momentum projectionm by no
more than 1; thus such mixing cannot take place in the fi
order byVrel . Thus in the first order of perturbation theor
the operator of the spin-orbit interactionVso can be replaced
by a simpler operatorṼso52(1/4c2r 3)szLz , wheresz is a
c number.

The operatorṼso has clear classical meaning. In the cla
sical limit n→` it becomes a usual~not operatoral! function
of dynamical variables. The operatorVmass comprising
‘‘mass on velocity dependence’’ has a clear classical me
ing from the very beginning. The Darwin contact interacti
VDarw will be excluded from consideration here because i
substantial only ifLz50 ~the caseLz50 is more compli-
cated and will not be analyzed here!. Thus we are left with
three perturbations only:Vdia, Vmass, andṼso.

Numerically calculated splitting produced by the relati
istic and diamagnetic interactions is shown in Fig. 1.

III. CLASSICAL PERTURBATION THEORY

In the classical model the electron of the unperturbed
drogen atom moves along a Kepler orbit. All possible Kep
orbits form a manifold later referred to as the Kepler or
space. Each orbit is characterized by the angular momen
vectorL and the Runge-Lenz vectorA, which are mutually
orthogonal.

Owing to the perturbing influence of the external ma
netic field and the relativistic effects,L andA will no longer
be constant. Their time dependence will consist of small
cillations with the period of the Kepler motion and slo
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accumulating drift, which eventually leads to their lar
scale change~the so called secular evolution!. The effective
Hamiltonian determining the secular evolution~in the first
order of perturbation theory! is obtained by averaging th
perturbation over a period of the unperturbed Kepler mo
ment@20#; it can be regarded as a function ofL andA char-
acterizing the unperturbed orbit.

The paramagnetic term in the perturbation can be
cluded from consideration by using the frame of referen
that rotates with the Larmor frequency.

AveragingVdia, Vmass, and Ṽso over a period we obtain
the effective Hamiltonian

^Vdia&5
vL

2

2 F 1

8E2
~L11!2

Lz
2

4EG ,

^Vmass&5
E2

c2S 3

2
2

2

A12A2D ,

~4!

^Ṽso&5
2E3szLz

c2~12A2!3/2
,

H ~2!5^Vdia&1^Vmass&1^Ṽso&,

wherevL[H/2c is the Larmor frequency,L[4A225Az
2 is

the well-known Solov’ev integral@8,9#, A[uAu, andAz and
Lz arez components ofA andL , respectively.

IV. QUALITATIVE ANALYSIS
OF PHASE TRAJECTORIES

Now we have three integrals of motion. They areLz , E
[H (0), andH (2). The first integral is conserved exactly. Th
other two are conserved in the averaged system.

The integralH (2) can be simplified by dropping the term

^Ṽso&, which is always much smaller than̂Vmass& in the
semiclassical limit. Therefore, this term is negligible wh
analyzing the topology of the phase trajectories~however,
the exact appearance of^Ṽso& is essential when we state th

^Ṽso& does not violate the symmetry of^Vdia& and ^Vmass&).
The conserving propertyH (2) can be replaced by som

other function of^Vdia&1^Vmass&, Lz , and E. We will use
the integral

L̃[4A225Az
22

32E4

c2vL
2

1

A12A2
[L2

32E4

c2vL
2

1

A12A2
.

The parameterj[32E4/c2vL
2 is a constant. Therefore w

can say thatL̃ is a function only ofA. The typical level
surfaces ofL̃ for some intermediate value ofj are presented
in Fig. 2.L̃ is invariant under rotation about thez axis in the
A space, and Fig. 2 shows a section ofA space by an arbi-
trary plane containing thez axis.

All possiblevalues ofA are determined by the inequalit

Z~A![~12A2!S 12
Az

2

A2D 22Lz
2~2E!>0. ~5!
-

-
e

It follows from the non-negativity of the Gram determina
of the vectorsA, L , andez , and from the relations

~A•L !50,

L25
12A2

2~2E!
. ~6!

Equation~5! becomes equality ifA, L , andez are coplanar.
For values ofL̃ in the vicinity of minimum (L̃'L̃min)

we have two unconnected surfaces symmetrical with res
to the xy plane in theA space and two types of phase tr
jectories, withAz.0 and withAz,0. This is, of course, well
known@8–10#, and relativistic effects do not lead to anythin
essentially new in this case. The result is the presence o
extremely narrow doublets of levels of opposite parity in t
lower part of the spectrum~see Fig. 1! provided the relativ-
istic distortion of the quadratic Zeeman spectrum is not
strong (j is not too large!.

Figure 1 also shows that if relativistic effects are not t
small, there is also a doublet structure in theupperpart of the
multiplet. Corresponding level surfaces ofL̃ in Fig. 2 are
tori. Every torus is, of course, a connected set and the p
ence of the doublet structure looks a little puzzling.

The explanation is that every Kepler orbit is defined n
only by the vectorA but also by the vectorL . It is elemen-
tary to show~see Fig. 3! that, for a genericA, there exist two
vectorsL with the samez projectionLz satisfying Eqs.~6!.

FIG. 2. Level surfaces ofL̃ in A space for j55 and

2Lz
2(2E)50.26. Formal expression forL̃ is defined forA2,1 but

real Kepler orbits exist only forA bounded by inequality~5!. The
boundaryZ(A)50 is depicted by thè -like bold line. The level
surfaces can be classified in accordance with their topological st

ture and symmetry. There are three types of level surfaces ofL̃ in
A space:~1! Pairs of symmetric closed strips.In the Kepler orbit
space they are represented by pairs of symmetric tori. The co
sponding quantum spectrum consists of doublets in the lower
of the multiplet.~2! Tori. In the Kepler orbit space every such toru
is represented by a pair of symmetric tori. The corresponding qu
tum spectrum consists of doublets in the upper part of the multip
~3! Closed strips.In the Kepler orbit space every such strip is re
resented by one torus that is symmetric by itself. The correspon
quantum spectrum consists of singlets.
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These two vectors are symmetrical with respect to thezA
plane; they merge in the exceptional case when the rela
~5! turns into equality.

Thus, each level surface ofL̃ in theA space that does no
reach the boundaryZ(A)50 gives rise to two isolated sym
metrical tori in the Kepler orbit space. Hence the doub
structure in the upper part of the multiplet.

We should also mention the third type of level surfaces
L̃ corresponding to its middle values. They cross the bou
ary Z(A)50 where the two branches ofL merge. Conse-
quently there is just one torus in the Kepler orbit space c
responding to such a surface. Every such torus is symm
by itself and does not have a partner. Therefore, the co
sponding part of the quantum spectrum consists of singl

FIG. 3. Two symmetric locations of vectorL are possible when
vector A is fixed. This may lead to the appearance of a doub
structure in the upper part of the quantum spectrum.
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In the nonrelativistic case theL̃ level surfaces are hyper
boloids that always cross the boundaryZ(A)50. Only the
first and the third types of level surfaces are present. W
relativistic corrections gradually grow, the maximum ofL̃
shifts to the allowed region bounded by inequality~5!, and
every surface of the third type becomes a surface of
second type as soon as it iswholly enclosed in the allowed
region.

V. DISCUSSION

~i! We described two symmetries of the classical syste
the reflection inA space (A→2A) and the symmetry shown
in Fig. 3. Let us unify the two symmetries into a group th
consists of four elements. This unified group includes
group of space reflection parity as a subgroup@the space
reflectionP[($r ,p%→$2r ,2p%) in the Kepler orbit space
operates asP5($A,L%→$2A,L%)]. On the one hand, the
operationP changesA to 2A and therefore it describes th
doublet structure in the lower part of the spectrum. On
other hand,P also changes the mutual orientation of t
three vectors (A,L ,ez) and therefore it describes the doubl
structure in the upper part of the spectrum. So, both type
doublets can be described in terms of the group consistin
two elements.

~ii ! But this is not always sufficient. Let us add to th
system a weak electric fieldE parallel to the magnetic field
B. To obtain the approximate integral of motion in this ca
one must add toL̃ the term that is proportional toAz . This
term will violate the space reflection symmetry and the do
blets in the lower part of the spectrum will be destroyed. B
the symmetry shown in Fig. 3 will remain and the doub
structure in the upper part of the spectrum will be conserv
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@9# E. A. Solov’ev, Zh. Éksp. Teor. Fiz.82, 1762 ~1982! @Sov.

Phys. JETP55, 1017~1982!#.
@10# D. Herrick, Phys. Rev. A26, 323 ~1982!.
@11# J. C. Gay and D. Delande, Comments At. Mol. Phys.13, 275

~1983!.
@12# P. A. Braun, Zh. E´ ksp. Teor. Fiz.84, 850 ~1983! @Sov. Phys.
JETP57, 492 ~1983!#.

@13# J. B. Delos, S. K. Knudson, and D. W. Noid, Phys. Rev. A28,
7 ~1983!.

@14# H. Hasegawa, M. Robnik, and G. Wunner, Prog. Theor. Ph
Suppl.98, 198 ~1989!.

@15# P. A. Braun, Rev. Mod. Phys.65, 115 ~1993!.
@16# The Hydrogen Atom, edited by G. F. Bassani, M. Inguscio, an
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